skip to primary navigationskip to content
 

Publications

Publications since 2014

 

  • Durrant, C.S., Ruscher, K., Sheppard, O., Coleman, M.P.* and Özen, I. (2020) Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis. 11: 98. https://www.nature.com/articles/s41419-020-2288-4

 

 

  • Adalbert, R., Kaieda, A., Antoniou, C., Loreto, A., Yang, X., Gilley, J., Hoshino, T., Uga, K., Makhija, M., and Coleman, M.P. (2019) Novel HDAC6 inhibitors increase tubulin acetylation and rescue axonal transport of mitochondria in a model of Charcot-Marie-Tooth Type 2F. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.9b0033

 

  • Loreto, A., Hill, C., Hewitt, V.L., Orsomando, G., Angeletti, C., Gilley, J., Lucci, C., Sanchez-Martinez, A., Whitworth, A.J., Conforti, L., Dajas-Bailador, F., and Coleman, M.P. (2019) Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol Dis 134: Epub Ahead of Print. https://doi.org/10.1016/j.nbd.2019.104678

 

  • White, M., Lin, Z., Kim, E., Hestridge, C., Altamira, E., Hunt, C., Burchill, E., Callaghan, I., Loreto, A., Brown-Write, H., Mead, R., Simmons, C., Cash, D., Coleman, M.P., and Sreedharan, J. (2019) Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathologica Communications. 7: 166. https://doi.org/10.1186/s40478-019-0800-9

 

  • Horsefield, S., Burdett, H., Zhang, X., Manik, M., Shi, Y., Chen, J., Qi, T., Gilley, J., Lai, J., Rank, M., Casey, L., Gu, W., Ericsson, D., Foley, G., Hughes, R. Bosanac, T., von Itztein, M., Rathjen, J., Nanson, J., Boden, M., Dry, I., Williams, S., Staskawicz, B., Coleman, M.P., Ve, T., Dodds, P*., and Kobe, B.* (2019) Structural basis of NAD+-cleavage activity by animal and plant TIR domains with functions in cell-death pathways. Science. https://doi.org/10.1126/science.aax1911

 

  • Lukacs, M.*, Gilley, J.*, Zhu, Y*, Orsomando, G., Angeletti, C., Liu, J., Yang, X., Park, J., Hopkin, R.J., Coleman, M.P., Zhai, R.G., and Stottmann, R.W. (2019).  Severe biallelic loss-of-function mutations in NMNAT2 in two fetuses with fetal akinesia deformation sequence. Exp Neurol. 320https://doi.org/10.1016/j.expneurol.2019.112961

 

  • Huppke, P., Wegener, E., Gilley, J., Angeletti, C., Kurth, I., Drenth, J.P.H., Stadelmann, C., Barrantes-Freer, A., Brück, W., Thiele, H., Nürnberg, P., Gärtner, J., Orsomando, G., and Coleman, M.P. (2019). Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp Neurol. 320https://doi.org/10.1016/j.expneurol.2019.112958 

 

  • Sheppard, O., Coleman, M.P., and Durrant, C.S. (2019). Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta. Journal of Neuroinflammation. 16: 106. https://doi.org/10.1186/s12974-019-1490-8

 

  • Hill, C.S., Menon, D.K., Coleman, M.P. (2018). P7C3-A20 neuroprotection is independent of Wallerian degeneration in primary neuronal culture. Neuroreport. 12;29(18):1544-1549. 10.1097/WNR.0000000000001146

      

  • Gilley, J., Mayer, P., Yu, G., and Coleman, M.P. (2018). Low levels of NMNAT2 compromise axon development and survival. Human Molecular Genetics. ddy356. https://doi.org/10.1093/hmg/ddy35

 

  • Adalbert, R., Milde, S., Durrant, C., Ando, K., Stygelbout, V., Yilmaz, Z., Gould, S., Brion, J.P., and Coleman, M.P. (2018). Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiol Aging68:68-75. https://doi.org/10.1016/j.neurobiolaging.2018.03.033

 

  • White, M.A., Kim, E., Duffy, A., Adalbert, R., Phillips, B.U., Peters, O.M., Stephenson, J., Yang, S., Massenzio, F., Lin, Z., Andrews, S., Segonds-Pichon, A., Metterville, J., Saksida, L.M., Mead, R., Ribchester, R.R., Barhomi, Y., Serre, T., Coleman. M.P., Fallon, J., Bussey, T.J., Brown Jr, R.H., and Sreedharan J.(2018). TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nature Neuroscience 21: 552–563. https://doi.org/10.1038/s41593-018-0113-5

 

 

  • Carpi, F.M., Cortese, M., Orsomando, G., Polzonetti, V., Vincenzetti, S., Moreschini, B., Coleman, M.P., and Magni, G. (2018). Simultaneous quantification of nicotinamide mononucleotide and related pyridine compounds in mouse tissues by UHPLC-MS/MS. Sep Sci plus1(1):22-30. https://doi.org/10.1002/sscp.201700024

 

  • Gilley, J., Ribchester, R.R., and Coleman, M.P. (2017). Sarm1 deletion, but not WldS, confers lifelong rescue in a mouse model of severe axonopathy. Cell Reports. 21(1):10-16. https://doi.org/10.1016/j.celrep.2017.09.027

 

  • Di Stefano, M., Loreto A., Orsomando, G., Mori V., Zamporlini, F., Hulse, R.P., Webster, J., Donaldson, L.F., Gering, M., Raffaelli, N., Coleman, M.P., Gilley, J., and Conforti L. (2017). NMN deamidase delays Wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Current Biology. 27(6):784-794. https://doi.org/10.1016/j.cub.2017.01.070

 

  • Hung, C., and Coleman, M.P. (2016). KIF1A mediates axonal transport of BACE1 and identification of independently moving cargoes in living SCG neurons. Traffic. 17(11):1155-67. https://doi.org/10.1111/tra.12428

 

  • Harwell, C.S., and Coleman, M.P. (2016). Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice. Mol. Neurodeg. 11(1):44. https://doi.org/10.1186/s13024-016-0110-7

      −Ranked one of Molecular Neurodegeneration’s most influential articles in 2016. 

 

  • Clark, D.E., Waszkowycz, B., Wong M, Lockey, P.M., Adalbert, R., Gilley, J., Clark, J., and Coleman, M.P. (2016). Application of virtual screening to the discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with potential for the treatment of cancer and axonopathies. Bioorganic Med. Chem. Lett. 26(12):2920-6. https://doi.org/10.1016/j.bmcl.2016.04.039

 

 

  • Gilley, J., Ando, K., Seereeram, A., Rodriguez-Martin, T., Pooler, A.M., Sturdee, L., Anderton, B.H., Brion, J.P., Hanger, D.P. and Coleman, M.P. (2016). Mislocalization of neuronal tau in the absence of tangle pathology in phosphomutant tau knockin mice. Neurobiol Aging. 39:1-18. https://doi.org/10.1016/j.neurobiolaging.2015.11.028

  

  • Rodriguez-Martin, T., Pooler, A.M., Lau, D.H.W., Morotz, G.M., De Vos, K.J., Gilley, J., Coleman, M.P., and Hanger, D.P. (2016). Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiol. Dis. 85: 1-10. https://doi.org/10.1016/j.nbd.2015.10.007

 

  • Mundinger, T.O., Cooper, E., Coleman, M.P., and Taborsky Jr., G.J. (2015) Short-term diabetic hyperglycemia suppresses celiac ganglia neurotransmission, thereby impairing sympathetically mediated glucagon responses. Am. J. Physiol. 309(3): E246-255. https://doi.org/10.1152/ajpendo.00140.2015

 

  • Gilley, J., Orsomando, G., Nascimento-Ferreira, I., and Coleman, M.P. (2015) Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10(12): 1974-1981. https://doi.org/10.1016/j.celrep.2015.02.060

 

  • Godzik, K. and Coleman, M.P. (2015). The axon-protective WldS protein partially rescues mitochondrial respiration and glycolysis after axonal injury. J. Mol. Neurosci. 55: 865-871. https://doi.org/10.1007/s12031-014-0440-2 

 

  • Milde, S. and Coleman, M.P. (2014). Identification of palmitoyltransferase and thioesterase enzymes that control the subcellular localization of axon survival factor Nmnat2. J. Biol. Chem. 289(47): 32858-32870.

    https://doi.org/10.1074/jbc.M114.582338

 

 

  • *Di Stefano, M., *Nascimento-Ferreira, I., Orsomando, G., Mori, V., Brown, R., Janeckova, L., Gilley, J., Loreto, A., Vargas, M., Worrell, L.A., Tickle, J., Herd-Smith, A., Godzik, K., Patrick, J., Webster, J.R.M., Marangoni, M., Carpi, F., Pucciarelli, S., Meng, W., Sagasti, A., Ribchester, R.R., Magni, G. and *Coleman, M.P., and *Conforti, L. (2014). A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Diff. 22: 731-742. https://doi.org/10.1038/cdd.2014.164 

 

  • *Conforti, L., *Gilley, J., and Coleman, M.P. (2014). Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15: 394-409. https://doi.org/10.1038/nrn3680 

 

  • Marangoni, M., Adalbert, R., Janeckova, L., Patrick, J., Kohli, J., Coleman, M.P. and Conforti, L. (2014) Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington's disease. Neurobiol Aging 35(10): 2382-2393. https://doi.org/10.1016/j.neurobiolaging.2014.04.024

 

Selected older publications

  •  Milde, S., Fox, N.A., Freeman, M.R. and Coleman, M.P. (2013) Deletion of exon 6 and nearby sequences transforms the protective capacity of axon survival factor Nmnat2 in vivo. Nature Scientific Reports. 3: 2567

 

  • Gilley, J., Adalbert, R., Yu, G., and Coleman, M.P. (2013) Rescue of PNS and CNS axon growth and survival defects in mice lacking NMNAT2. J Neurosci. 33: 13420-24

 

  • Milde, S., Gilley, J., and Coleman, M.P. (2013) Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLoS Biol 11(4): e1001539

 

  • Adalbert, R., and Coleman, M.P. (2012) Axon pathology in age-related neurodegenerative disorders.  Neuropath Appl Neurobiol 39: 90-108

 

  • Osterloh, J.M., Yang, J., Rooney, T.M., Fox, A.N., Adalbert, R., Powell, E.H., Sheehan, A.E., Avery, M.A., Hackett, R., Logan, M.A., MacDonald, J.M., Ziegenfuss, J.S., Milde, S., Hou, Y-J., Nathan, C., Ding, A., Brown, R.H. Jr., Conforti, L., Coleman, M.P., Züchner, S., Tessier-Lavigne, M. and Freeman, M.R. (2012). dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337: 481-4

 

  • Gilley, J., Seereeram, A. Ando, K., Mosely, S., Andrews, S., Kerschensteiner, M., Misgeld, T., Brion, J-P., Anderton, B., Hanger, D.P. and Coleman, M.P.  (2011) Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a ‘P301L’ tau knock-in mouse. Neurobiol Aging 33: 621e1-15

 

  • Andrews, S., Gilley, J., and Coleman, M.P. (2010) Difference Tracker: ImageJ plugins for fully-automated analysis of multiple axonal transport parameters J Neurosci. Meth 193: 281-7 

 

  • Babetto, E., Beirowski, B., Janeckova, L., Brown, R., Thomson, D., Ribchester, R.R., and Coleman, M.P.  (2010) Targeting Nmnat1 to axons and synapses transforms its neuroprotective potency in vivo.  J Neurosci. 30: 13291-13304

 

  • Coleman, M.P. and Freeman, M.R. (2010) Wallerian degeneration, WldS and Nmnat. Ann Rev Neurosci. 33: 245-67

 

  • Gilley, J., and Coleman, M.P. (2010) Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons.  PLOS Biol 8: (1) e1000300 doi: 10.1371/journal.pbio.10000300

 

  • Conforti, L., Wilbrey, A., Morreale, G., Janeckova, L., Beirowski, B., Adalbert, R., Mazzola, F., Michele Di Stefano, Hartley, R., Babetto, E., Smith, T., Gilley, J., Billington, R.A., Genazzani, A.A., Ribchester, R.R., Magni, G., and Coleman, M.P.  (2009) WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice.  J Cell Biol 184: 491-500

 

  • Beirowski, B., Babetto, E., Gilley, J., Mazzola, F., Conforti, L., Janeckova, L., Magni, G., Ribchester, R.R., and Coleman, M.P. (2009) Non-nuclear WldS determines its neuroprotective efficacy for axons and synapses in vivo.  J Neurosci 29: 653-68

 

  • Adalbert, R., Nogradi,A., Babetto, E., Janeckova, L., Walker, S.A., Kerschensteiner, M., Misgeld, T. and Coleman, M.P.  (2009) Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain 132: 402-16

 

  • Beirowski, B., Babetto, E., Coleman, M.P. and Martin, K.R. (2008)  The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur J Neurosci. 28: 1166-79

 

  • Conforti, L., Fang, G., Beirowski, B., Wang, M.S., Sorci, L., Asress, S., Adalbert, R., Silva, A., Bridge, K., Magni, G., Glass, J.D., Coleman, M.P. (2007) NAD+ and axon degeneration revisited: Nmnat1 cannot substitute for WldS to delay Wallerian degeneration.  Cell Death and Differentiation 14: 116-27

 

  • Coleman, M.P. (2005) Axon degeneration mechanisms: commonality amid diversity Nature Reviews Neuroscience 6: 889-898

 

  • Beirowski, B., Adalbert, R., Wagner, D., Grumme, D.S., Addicks, K., Ribchester, R.R. and Coleman, M.P. (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves.  BMC Neuroscience 6: 6

 

  • Adalbert, R., Gillingwater, T.H., Haley, J.E., Bridge, K., Beirowski, B., Berek, L., Wagner, D., Grumme, D., Thomson, D., Addicks, K., Ribchester, R.R. and Coleman, M.P. (2005) A rat model of slow Wallerian degeneration (WldS) with improved preservation of synapses.  Eur. J. Neurosci. 21: 271-277

 

  • Mi, W., Beirowski, B., Gillingwater, T.H., Adalbert, R.J., Wagner, D., Grumme, D., Conforti, L., Arnhold, S., Addicks, K., Wada, K., Ribchester, R.R. and Coleman, M.P. (2005). The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice Brain 128: 405-416

 

  • Beirowski, B., Berek, L., Adalbert, R., Wagner, D., Grumme D.S., Addicks, K., Ribchester, R.R. and Coleman, M.P. (2004) Quantitative and qualitative analysis of Wallerian degeneration using restricted axonal labeling in YFP-H mice.  J. Neurosci. Meth. 134: 23-35

 

  • Samsam, M., Mi, W., Wessig, C., Zielsek, J., Toyka, K.V., Coleman, M.P., and Martini, R. (2003).  The WldS mutation delays robust loss of motor and sensory axons in a genetic model of myelin-related axonopathy.  J. Neurosci.  23: 2833-9

 

  • Ferri, A., Sanes, J., Coleman, M.P., Cunningham, J.M., and Kato, A.C. (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease.  Curr. Biol. 13: 669-73

 

  • Coleman, M.P. and Perry, V.H. (2002) Axon pathology in neurological disease: a neglected therapeutic target.  Trends Neurosci.  25: 532-7

 

  • Mi, W., Conforti, L. and Coleman, M.P. (2002) A genotyping method to detect a unique neuroprotective factor for axons (WldS)  J. Neurosci. Meth.  113: 215-218

 

  • Mack, T.G.A., Reiner, M., Beirowski, B., Mi, W., Emanuelli, M., Wagner, D., Thomson, D., Gillingwater, T., Court, F., Conforti, L., Fernando, F.S., Tarlton, A., Andressen, C., Addicks, K., Magni, G., Ribchester, R.R., Perry, V.H., and Coleman, M.P. (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene   Nature Neuroscience  4: 1199-1206

 

  • Conforti, L., Tarlton, A., Mack, T.G.A., Mi, W., Buckmaster, E.A., Wagner, D., Perry, V.H., and Coleman, M.P. (2000) A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the Slow Wallerian Degeneration (WldS) mouse.  Proc. Natl. Acad. Sci. 97: 11377-11382

 

  • Coleman, M.P., Conforti, L., Buckmaster, E.A., Tarlton, A., Ewing, R.M., Brown, M.C., Lyon, M.F., and Perry, V.H. (1998) An 85kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse.   Proc. Natl. Acad. Sci. 95: 9985-9990